Backpaper IInd semester 2016 B.Math.Hons.IIIrd year Algebraic geometry — B.Sury

In what follows, K is an algebraically closed field.

Q 1.

In the ring $\mathbb{Z}[X]$, prove that I = (4, X) is (2, X)-primary but that I is not the power of the maximal ideal (2, X).

Q 2.

Let A be a commutative ring with unity. Show that if Spec(A) is not connected, then $A \cong A_1 \times A_2$ where the rings A_1, A_2 are both non-zero.

Q 3.

Let $\theta : A \to B$ be a K-algebra homomorphism of finitely generated Kalgebras. By using the Noether normalization lemma or otherwise, deduce that $\theta^{-1}(\mathbf{m})$ is a maximal ideal of A for each maximal ideal \mathbf{m} of B.

Q 4.

Let $V \subset \mathbf{A}^n(K)$ be an affine variety. Let I(V) be its vanishing ideal and $A = K[X_1, \dots, X_n]/I(V)$. For $f \in A$, consider $D(f) := \{x \in V : f(x) \neq 0\}$. Prove that each dense open subset U of V contains a dense set of the form D(f).

Hint. Decompose $V = \bigcup_{i=1}^{d} V_i$, into irreducible components and observe that no V_i is contained in $V \setminus U$. Using the fact that an open subset is dense if and only if it meets every irreducible component, show you can get some $f \in I(V \setminus U)$ outside each $I(V_i)$ and that D(f) is contained in U and is dense in V.

Q 5.

Let $\theta : \mathbf{A}_K^1 \to V(Y^2 - X^3) \subset \mathbf{A}_K^2$ be the map

 $t \mapsto (t^2, t^3).$

Show that θ is a bijective morphism and that the inverse of θ is not a morphism.